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Abstract 
 
Microarrays are a relatively new, high-throughput data acquisition 
technology for investigating biological phenomena at the micro-
level. One of the more common procedures for microarray 
experimentation is that of the microarray time-course experiment. 
The product of microarray time-course experiments is time-series 
data, which subject to proper analysis has the potential to have 
significant impact on the diagnosis, treatment, and prevention of 
diseases. While existing information visualization techniques go 
some way to making microarray time-series data more 
manageable, requirements analysis has revealed significant 
limitations. The main finding was that users were unable to 
uncover and quantify common changes in value over a specified 
time-period. This paper describes a novel technique that provides 
this functionality by allowing the user to visually formulate and 
modify measurable queries with separate time-period and 
condition components. These visual queries are supported by the 
combination of a traditional value against time graph 
representation of the data with a complementary scatter-plot 
representation of a specified time-period. The multiple views of 
the visualization are coordinated so that the user can formulate 
and modify queries with rapid reversible display of query results 
in the traditional value against time graph format. 
 
CR Categories: H.5.2.  [Information Storage and Retreval ]: User 
Interfaces -- Screen design ; H.3.3   [Information Storage and 
Retreval ]: Information Search and Retrieval -- Query formulation 
 
Keywords: Bioinformatics, Microarrays, Information 
Visualization, Time-Series, Multiple-views 
 
1 Introduction 
 
Time-series can be described as “…a sequence of observations 
ordered by a time parameter”. These observations are typically 
measured at regular discrete intervals [Yaffee 2000] and 
constitute an observed realization of an underlying event, or 
combination of events. It is often the case that a large collection of 
related time-series will combine to constitute an observed 
realization of an underlying system. Examples of such time-series 
collections are numerous, and include stock market data, 
economic data, medical data and microarray data.  

 
The specific data we have been working with is that produced by 
microarray time-course experiments. Microarrays are a relatively 
new, high-throughput data acquisition technology for 
investigating biological phenomena at the micro-level. The 
product of microarray time-course experiments is time-series data 
where the origin of time-series are genes and the recorded value is 
gene-expression. Individual time-series are often referred to as 
expression patterns or expression profiles. While microarray 
technology is credited for producing massive amounts of data, 
which have the potential to have significant impact on the 
diagnosis, treatment, and prevention of diseases [Debouck and 
Goodfellow 1999; Jagota 2001; Noordewier and Warren 2001; 
Schena et al. 1996; Somogyi 1999], the analysis and handling of 
the data is becoming a major bottleneck in the utilization of the 
technology towards its full potential [Brazam and Vilo 2000; 
D'Haeseleer et al. 1999]. 
 
The two main approaches to the visualization of microarray data 
are clustering techniques that group time-series according to some 
predefined similarity measure and visual querying methods that 
allow the user to interactively explore the data through the 
formulation of visual queries. Common pre-processes to the 
visualization of microarray data are normalization and rescaling. 
Normalization [Duggan et al.1999] is a statistical preprocess that 
seeks to account for deficiencies in the experimentation, which 
may obscure the underlying expression levels. Rescaling is an 
optional preprocess which transforms individual time-series to 
improve inter-time-series comparisons. Another, less common, 
preprocess to the visualization of microarray data is the 
interpolation of missing values. 
 
The most common of approach to the visualization of microarray 
time-series is clustering. The rationale behind clustering is 
obvious. Clustering together similar elements allows the data 
analyst to generalize across groups of elements rather than having 
to consider individual elements. For this reason, clustering can be 
seen as making the data more manageable and lessening the 
problems associated with the massive scale of the data 
(microarray experiments typically record the expression of around 
6,000 genes). 
 
The first stage of clustering is the creation of a similarity matrix. 
In the similarity matrix both rows and columns correspond to the 
full list of genes - cells reflect inter-time-series similarities 
calculated according to some predefined similarity measure 
[Quackenbush 2001]. The direct visualization of a similarity 
matrix is a grid with the brightness of cells representing degrees 
of similarity. Other methods of visualizing the similarity matrix, 
such as self organizing maps (SOM) and multidimensional scaling 
(MDS), represent genes as individual points with the distance 
between representations approximate to inter-expression-pattern 
similarities. The most common method of clustering is based on 
the result of hierarchical agglomerative clustering [Eisen et al. 



1998; Seo and Shneiderman 2002] which uses the similarity 
matrix to produce a type of binary tree known as a dendrogram. In 
the most common visualization of a dendrogram (shown in Figure 
1) the end points of outer branches represent genes with the 
similarity groupings represented by common branches in the tree 
structure. In this display gene expression patterns are color-coded 
and stacked vertically beside their respective gene nodes. This 
part of the display is known as a color mosaic. An alternative 
method of visualizing the results of hierarchical agglomerative 
clustering is presented by Fua et al. [1999]. In this visualization a 
variation on parallel coordinates is used to convey aggregation 
information for clusters. The display is multiresolutional allowing 
users to navigate the dendrogam structure until the desired focus 
region and level of detail is reached. While this visualization is 
suggested as a method for displaying multidimensional data, it is 
also suitable for time series which data can be considered as a 
specialized subtype of multidimensional data where the ordering 
of dimensions (time points) is a fundamental quality of the data.  
 
While clustering is useful for revealing certain natural groupings 
and providing a global view of the data, it is also highly subjective 
and the significance of what one sees is not quantified [Jagota 
2001]. Moreover, individual time-series may contain multiple 
interesting features that cannot all be accounted for by the single 
similarity measure on which a clustering visualization must 
ultimately rely. The abstraction of the data, based on similarity, 
leads to the loss of important information. For example, if a 
biologically significant feature occurs exclusively over a limited 
period of the overall time frame its representation may be diluted 
by the representation of less significant features occurring over 
the remainder of the time frame. 
 
The primary alternative to the clustering of microarray time-series 
data is visual querying. Existing visual query tools for time- series 
present an overview of the data as overlaid value verus time 
graphs (Figure 2).  Visual queries are formulated by clicking and 
dragging to draw boxes on top of the overview to specify an 
acceptable range of values over a given period of time. Successive 
querying filters the data, causing the initial overview to be 
replaced by overlaid value against time graphs of a filtered subset. 
The TimeSearcher technique [Hochheiser and Shneiderman 2001] 
extends this basic model by allowing the user to modify queries, 
by clicking and dragging edges or corners of visual query 
representations while viewing a rapid reversible update of query 

results (Figure 2). The extended parallel coordinate plots of 
Hauser et al. [2002] offer similar functionality to that of 
TimeSearcher with the most notable extension of allowing queries 
specifying a permitted range of gradients between two adjacent 
time-points.  
 
The main advantage of visual querying over clustering is that 
queries are measurable and it is easy for the user to quantify their 
results. An additional advantage is that queries can be confined to 
a specified period of time. This allows for the identification of 
biologically significant features that occur exclusively over a 
limited period of the overall time frame. The disadvantage of 
existing visual querying techniques is that the user will generally 
have a less effective overview of the data than that offered by 
clustering. The overlaid value against time graph representation of 
time-series is unable to accommodate large numbers of dissimilar 
time-series without individual time-series being illegible due to 
crossing lines. This problem is illustrated in Figure 2, with a 
relatively small number of overlaid time-series. It can be seen that 
this representation is only effective in revealing extreme values, 
and the extent of outlying values, at individual time-points.  
 
Commercial microarray visualization tools often combine 
clustering and visual querying views of the data in multiple 
coordinated windows. This allows the user to benefit from the 
overview provided by clustering while having the ability to 
perform measurable queries using visual querying views. 
However, these tools were unable to satisfy all the requirements 
of our test users who were a typical group of biologists and 
bioinformaticians working toward the analysis of microarray 
time-series data. This paper describes the development of a novel 
visualization technique, which addresses these particular visual 
exploration and querying requirements. 

 
2 Evaluation of existing systems 
 
Initial user requirement analysis  [Craig et al. 2002] indicated that 
existing systems did not allow users the desired functionality for 
microarray time-series analysis. In order to properly understand 
the limitations of existing systems a more detailed requirements 
analysis and evaluation were undertaken. This process guided us 
in the development of the system described in this paper. 
 
The personnel involved in requirements analysis had a wide range 
of abilities; some were expert biologists who were unfamiliar with 
computing concepts, others were practicing bioinformaticians 
who were more familiar with computing concepts but less familiar 
with the particular goals of the biologists. The existing processes 
of microarray time-series analysis often involved a high level of 
cooperation between these two groups. The biologists would 
design and carry-out experiments while the bioinformaticians 
would apply ‘informatics’ techniques (derived from disciplines 
such as applied maths, computer science, and statistics) to 
organize and assist in the understanding of the information 
produced. Often the groups of users were not distinct, with 
biologists employing an increasing amount of bioinformatics and 
bioinformaticians becoming more tuned to the biology behind the 
experiments. For this reason it was important that the tool 
developed would be accessible to users unfamiliar with computer 
concepts as well as supporting the high level information seeking 
processes required for proper analysis of the data. 
 
The main product of requirements analysis was a list of high-level 
tasks that a microarray time-series tool should facilitate. These are 
summarized as follows: 
 

 
 

Figure 1: Clustering by color mosaic/ dendrogram 
display. 

 
 

Figure 2: Visual querying (TimeSearcher). 



1. Show which genes are switched-on or switched-off over 
a specified period of the overall time frame. 

2. Show which genes have rising or falling expression 
over a specified time-period. 

3. Allow for the identification of similar expression 
patterns. 

4. Relate features revealed to existing functional 
classifications. 

5. Allow for the export of results. 
 

Considering each of the items in our list of requirements in detail 
allowed us to gain a better understanding of what was required 
from the visualization tool.  
 
2.1 Requirement 1: switched-on or switched-off? 
 
The first thing to notice about requirement 1 is the ambiguity of 
the terms switched-on and switched-off. Consultation with the 
biologists revealed that these terms related to the level of gene 
expression. As different genes have different sensitivities, the 
level of expression at which a gene may be considered switched-
on or switched-off will be different. A common approach to 
determining whether a gene is switched-on or switched-off at a 
time-point is to rescale individual time-series according to their 
maximum value [Heath and Ramakrishnan 2002; Quackenbush 
2001]. As the sensitivity of a gene is often related to the 
maximum value of its time-series, this form of rescaling should 
give an indication of activity that accommodates for variable 
sensitivities. This form of rescaling is known as percent to 
maximum rescaling because rescaled time-series values are 
effectively percentages of the maximum value at any point in the 
time-series. A major advantage of this rescaling is that it makes 
values comparable across time-series. The problem with this 
approach is that, if the expression of a gene is low throughout the 
time-frame, rescaling will have the effect of amplifying noise or 
insignificant variations in expression making the gene appear to 
be switched on at certain time-points when it is in fact switched 
off at all time points. In order to assess whether a gene is switched 
on or switched off over a period of time, it is necessary to have 
both a view of rescaled value and absolute value over that period 
of time. 
 
2.2 Requirement 2: falling or rising? 
 
Requirement 2 deals with falling and rising expression. In order to 
calculate the change in value over a period of time it is necessary 
to subtract the initial value from the final value. This can be 
expressed as: 

∆v = v(t1)-v(t0), where t1 > t0 
where v(t0) is the initial value, v(t1) is the final value and ∆v is the 
change in value. If the user is to be able to assess the significance 
of change values it is again necessary to rescale the time-series. 
Calculating change according to percentage relative to maximum 
rescaled values gives percentage relative to maximum change. 
While this method of calculating change will make rise or fall in 
value comparable across time-series, it will not allow a rise to be 
comparable with a fall. In order that rise or fall in value are 
comparable it is necessary to consider log fold-change which 
makes an x factor change the converse equivalent of a 1/x factor 
change [Heath and Ramakrishnan 2002]. In order to calculate log 
fold change it is necessary to rescale the values according to the 
transform: 

LS(t) = log2 [V(t)/mean(V)] 
where V is the original time-series and LS is the rescaled time-
series.  This rescaling is known as log scaling [Jagota 2001]. In 
microarray data analysis log-scaled values are often used as an 

indication of the degree to which a gene is turned on or off but the 
major advantage of log-scaling microarray time-series is to relate 
changes in expression. A useful feature of log-scaling is that the 
change between log-scaled values equates to the log fold change 
between values.  As with percent to maximum rescaling, large-
scaling has the disadvantage that, if the expression of a gene is 
low throughout the time-frame rescaling will have the effect of 
amplifying noise or insignificant variations in expression. 
Therefore, to properly assess changing expression over a period of 
time, it is necessary to have both a view of log-scaled value and 
absolute value over that period of time. 
 
2.3 Requirement 3: Similarity 
 
Requirement 3 states that the user should be able to find similar 
expression patterns.  Having already stated that the features of 
interest are expression level and change in expression level over 
periods of time, it is logical that a measure of similarity should be 
able to reflect one or more of these features. Some descriptions of 
similarity measures were given by the biologists.  These included 
things like “expression rising at the start then falling away” and 
“expression rising later on and staying high”.  In order that the 
biologist can find similar expression patterns, it is necessary to 
allow for the grouping of time-series according to multiple value 
and change features over multiple time-periods.  
 
2.4  Requirement 4: existing functional classes 
 
The fourth requirement of the biologists was that existing 
functional classifications should be reflected in the visualization. 
Further investigation revealed that it is often the case that the most 
interesting features of the data will run across functional 
classifications and that considering functional classes separately is 
not an option.  
 
2.5 Requirement 5: export of queries and results 
 
The final requirement of the biologists was that the visualization 
technique should allow for the export of queries and query results 
so that they can be reused and shared between collaborators.  This 
requirement infers that the user should be able to extract sub-
collections of the data that are the result of measurable queries 
and that query parameters match the goals of the analysis.  
 
2.6 Limitations of existing techniques 
 
In order to assess the limitations of existing techniques we 
considered the extent to which they fulfilled our requirements 
analysis. 
 
Clustering techniques satisfy item 3 of our requirements analysis 
by grouping time-series according to similarity. However, due to 
the abstraction of the data based on similarity measures, these 
techniques are unable to adequately reveal features that exist over 
a limited period of the overall time frame and therefore cannot 
satisfy requirements 1 or 2. Moreover, the subjective nature of the 
displays produced makes it inappropriate for results to be 
exported and reused so clustering techniques cannot be seen to 
satisfy requirement 5.  Requirement 4 can be satisfied by 
clustering techniques if an indication of existing functional 
classifications is overlaid into the display. 
 
Existing techniques that allow for visual querying of time-series 
data allow for the grouping of time-series according to a specified 
acceptable range of values over a specified period of time 



[Hochheiser and Shneiderman, 2001]. This allows the user to find 
out when genes are switched on or off as stated in requirement 1.  
If the user combines queries that specify different value ranges 
over successive periods of time the visualization will reflect 
change in value over a period of time. However, while queries 
that reflect change in value over a period of time can be quantified 
according to the different value ranges and time-periods specified 
they are not quantifiable according to the actual degree of change. 
While extended parallel coordinates [Hauser et al. 2002] allow 
queries specifying an allowed gradient between two adjacent 
dimensions, querying gradient between non adjacent dimensions 
requires a reordering of dimensions that is inappropriate for time-
series data where the ordering of dimensions is a fundamental 
quality. Requirements 2 and 5 are only partially satisfied by 
visual query techniques. Requirement 3 is also only partially 
satisfied – while the user is able to find similar time-series where 
similarity is based on multiple value and change conditions over 
subsequent time-periods, change cannot be quantified in the 
desired manner for non-adjacent time-points. Requirement 4 
cannot be satisfied by existing visual query techniques by 
overlaying an indication of existing functional classifications 
because individual time-series are not distinct in the visualization 
due to the problem of crossing lines. The alternative method of 
filtering to examine individual functional classifications would 
make it difficult to identify features running across classifications. 
 
Requirements 1 and 2 both state the need to view value and 
change in value for both original and rescaled time-series. In the 
analysis of microarray time-series data rescaling is often seen as a 
process that precedes visualization. While some tools incorporate 
rescaling none give the option of switching between rescaled 
versions of the data during the analysis process. The need to refer 
to both the original and rescaled data during the analysis process 
is highlighted in our requirements analysis. 
 
While clustering techniques provide an overview of microarray 
time-series data that may be useful for revealing natural 
groupings, techniques that employ visual query mechanisms allow 
the user to constrain result sets more precisely and quantify their 
results. As our users had a requirement to quantify their results, so 
that queries and results could be shared and reused, the visual 
query approach was preferred. The major limitation of existing 
visual querying techniques is that queries can only specify an 
acceptable range of values over a period of time and not an 
acceptable range of change in value over an extended period of 
time. If we summarize the existing visual queries available as: 
 Qvmin ≤ v ≤ Qvmax, where Qtmin ≤ t ≤ Qtmax 
where v is the time-series value at time t and Qv is a specified 
value range over time-period Qt. The queries that the user requires 
to perform are: 

Qvmin ≤ v ≤ Qvmax, where Qtmin ≤ t ≤ Qtmax 
Q∆vmin ≤ (v(tmax)- v(tmin)) ≤ Q∆vmax 

where Q∆v is an allowable change in value. Accounting for the 
fact that the user also requires rescaled views of the data, and that 
queries based on such rescaled views will also be required, gives 
us two additional types of query to consider: 

QPMmin ≤ PM ≤ QPMmax, where Qtmin ≤ t ≤ Qtmax  
Q∆LSmin ≤ (LS (tmax)- LS (tmin)) ≤ Q∆LS max 

where QPM is a specified percentage max rescaled value range, 
PM is percentage max value, Q∆LS is an allowable change in log-
scaled value (change in log-scaled value ≡ fold change) and LS is 
log-scaled value. Each of these query types can be broken down 
into a condition component (Qv, Q∆v, QPM and Q∆LS), a time 
context (Qt) and a rescaling (none, percentage to max or log-
scale). This breakdown of query types is presented in Table 1. 
 

 
Query Conditions Context Rescaling 
Value  Qvmin, Qvmax Qtmin, Qtmax None 
Change Q∆vmin, Q∆vmax Qtmin, Qtmax None 
Percentage to 
max value 

QPMmin, QPMmax Qtmin, Qtmax Percentage 
to max 

Log fold 
change 

Q∆LSmin, Q∆LSmax Qtmin, Qtmax Log-scaling 

 
Table 1. Queries that require to be supported according to 

requirement analysis. 
 
The only types of query that are supported in existing visual 
querying tools are value queries or, if the data is rescaled 
beforehand, percentage to max value queries. Clustering tools 
support none of the required queries. In order to support all 
required queries it was necessary to develop a new visualization 
technique. 
 
3 Our approach 
 
Given that our users wish to investigate, study, or analyze their 
data with the outcome of one stage of analysis often leading to the 
formulation of another, it is easy to classify our tool as an 
exploratory system. The design strategy prescribed by 
Shneiderman [1998] for such systems is: designers should pursue 
the goal of having the computer vanish as users become 
completely absorbed in their task domain. This approach is 
particularly appropriate in our case where a significant proportion 
of our users are computer novices who are highly knowledgeable 
in the task domain. Shneiderman continues by stating that this 
goal is most effectively met with a direct manipulation 
representation of the data.      
 
Given the exploratory nature of microarray time-series analysis 
and the fact that our users’ initial idea of a query could not 
necessarily be quantified according to any specific parameters it 
was felt preferable that our visualization not only support direct 
manipulation but also visual queries where visual query 
components are directly overlaid onto a visualization of the data. 
Examining the queries that required support in order to satisfy our 
users’ requirements (listed in Table 1) allowed us to extract 
parameters that needed to be represented measurably in our 
visualization for visual querying. These are listed, along with 
functional dependencies, in Table 2  
 

Parameter Functional dependencies 
Time (t) none 
Value (v) v = F(t) 
Change (∆v) ∆v = F(t1, t2), where t1 < t2 
Percentage max rescaled value (PM) PM = F(t) 
Fold change (∆LS) ∆LS = F(t1, t2), where t1 < t2 

  
Table 2. Parameters to be represented measurably in the 

visualization in order to support visual querying. 
 

It is useful to note that while value and percentage max rescaled 
value can be derived from a single value of time, change and fold-
change are derived for a given time-period requiring two values of 
time; the start and end of the time-period. 
 
After deciding on the parameters that we needed to represent 
measurably in our visualization, we employed Shneidermans 
[1996] task by data type taxonomy of information visualizations 
to categorize the types of data we needed to visualize. Our time- 



series data can be most accurately classified as temporal data. 
However, as we are to support visual querying of change and 
fold-change, which are properties of the data that are derived for a 
given time-period, we can also consider the data to have a two-
dimensional aspect with dimensions ∆v and ∆LS for each time-
period. For time-series with n observations there are 2n possible 
time-periods. This makes it be infeasible to display all change and 
fold-changes for all possible time-periods for all time-series due 
to the massive amounts of data that would require to be displayed. 
In order to present measurable views of all parameters it is 
necessary to employ multiple views; an overview that presents the 
qualities of the data dependent on a single value of time and a 
detail view that presents qualities of the data dependent on a time-
period. While the overview displays the temporal aspect of the 
data the detail view displays derived two-dimensional subsets for 
selected time-periods.  
 
The interface of our microarray time-series visualization tool is 
illustrated in Figure 3.  The tool comprises of several components, 
a graph overview for time-period specification, a scatter-plot 
detail view of a specified time-period, a textual list of gene names, 
a set of range sliders for query composition, a combination query 
panel and a panel for revealing predefined groups. Each of these 
will be considered in more detail along with the effects of 
coordination to realize the user requirements.  
 
3.1 Overview 
 
The logical first stage in designing a visualization tool is to 
consider the overview. Overviews are commonly used to give the 
user a ‘feel’ for the entire data set allowing them to assess the 
general spread of the data. Overviews can also be used to provide 
a visual representation of the context for additional detail views. It 
makes sense that our initial overview should deal with the actual 
data rather that derived qualities presented to aid data 
manipulation. In this case the data we wish to visualize can be 
classified as temporal data 
 
The two main strategies for the visualization of temporal data are 
static and animated representations. Static representations, of 
which there are many examples [Plaisant et al. 1996; Kumar et al. 
1998], present time as a fixed axis of the overall display. 

Animations allow the user to observe all given attributes of the 
data at any given value of time while time is increased at a steady 
rate.  Animations of temporal data are somewhat less common 
than static representations due to the fact that users find it hard to 
compare between concurrent frames. This problem makes the use 
of animation most inappropriate for providing an overview as, in 
order to assess the spread of the data, the user may need to 
compare qualities of the data at all time-points. As discussed 
earlier the abstraction of the data necessary for clustering results 
in an inability to explore the data in a temporal manner. Therefore 
we have adopted the value against time graph representation of 
time- series data, which is an example of the standard static 
display where time is represented as a fixed axes and is the most 
familiar representation of this type of data. 
 
The overlaid value against time graph representation of multiple 
time-series is a measurable display and can be used in the 
formulation of certain visual queries. The value and time axes of 
the graph display support the specification of times and values 
This allows for the specification of allowable value ranges over 
periods of time in existing visual exploration techniques. The time 
axis of the value against time representation can also allow users 
to specify a time-period context for change and fold change 
queries. 
 
Given that all the users’ queries (listed in Table 1) have a time-
period context, the specification of a time-period would be the 
primary operation associated with the value against time graph 
display. It is also apparent, as value queries are not the only 
queries that require the specification of a time-period, that the 
users may wish to specify a time-period without specifying an 
acceptable range of values. For this reason it was decided to 
restrict interaction with the value against time graph display to the 
specification of a time-period so that this operation would be 
more efficient for all queries. This functionality was realized by 
the introduction of a time-slider. The design of the time-slider 
component is based on Eick’s [1994] data visualization sliders 
where the internal space of a range-slider [Ahlberg and 
Shneiderman 199] is used to display some aspect of the data. In 
our case the internal space of the slider is used to display a value 
against time graph representation of our time-series data. 
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Figure 3: Interface of the microarray time-series visualization tool. 



 
A minor alteration to the basic range slider design is that rather 
than allowing both thumbs to move independently, movement in 
the tmin thumb will cause the tmax thumb to move so that the actual 
time-period changes but the length of the time-period remains 
constant.  Only movement of the tmax thumb can alter the length of 
the time-period. This accommodates for the fact that the user is 
more likely to be interested in comparing time-periods of equal 
duration. Figure 4 shows the data overview provided by the time-
slider while Figure 5 shows the slider being used to specify a 
time-period.  
 
Once the time-slider has been used to specify a time-period, 
standard multi-range sliders can be used to specify acceptable 
ranges of value and change in value. As with existing visual query 
tools, the initial overview is replaced with the filtered subset after 
query formulation and visual representations of value queries are 
overlaid so that users can view the effect of their queries in a 
familiar format. Given that the result of queries will be a subset of 
the original data the problem of crossing lines in this display may 
be reduced. At the very least the overlaid time-series will have a 
period over which they are similar and it will be easy to recognize 
the general pattern over the period of similarity. The value query 
representation, overlaid on the corresponding filtered result set, is 
illustrated in Figure 6. In order to query percentage to max value 
and fold change, the appropriate rescaling mode is selected via a 
menu bar option and the data is rescaled accordingly. This 
approach matched the users’ expectations that they would be able 
to switch between multiple rescalings to verify their results and 
accommodated for the fact that having multiple rescalings 
presented at the same time may confuse users who were used to 
rescaling as a preprocess of visualization. If however, further user 
testing reveals this process of switching between rescaling modes 
to be cumbersome it is conceivable that multiple rescalings will 
be incorporated into the views of later prototypes.  
 
Combining the time-slider with multi-range query parameter 
sliders allows the users to perform all the queries they require 
with query results displayed as value against time graphs.  
 
A significant limitation of this combination is that the 
visualization cannot support visual queries of change in value so, 
unless the user’s initial idea of a change query is quantified 
according to change itself the formulation of such a query will 
involve a great deal of trial and error. To compound this problem, 
individual time-series and groups of time-series are not visually 
distinct (due to crossing lines) which makes it hard to directly 
assess the effects of any queries.  The introduction of a suitable 
detail view to complement the value against time overview goes 
some way to solving these problems. 
 
3.2 Detail view 
 
While the traditional value against time graph representation of 
time-series is capable of measurably presenting features of the 
data dependent on a single time, (value and percentage max 
rescaled value) there is also the need for an additional view of the 
data that presents features of the data dependent on a time-period. 
These features are change and fold-change.  These attributes are 
represented in a detail view as a scatter-plot as shown in Figure 7 
with the y axis being either change or fold change depending on 
the rescaling mode and the x axis being the mean value. The mean 
value is calculated for each individual gene over the specified 
time-period and should not be confused with the mean value of all 
genes over the time-period.  While a measurable display of 
change in expression allows the user to query according to rising 

or falling expression, it is also conceivable that a measurable 
indication of mean value will allow the user to query as to 
whether or not a group of genes are switched on or off.  
 
Another advantage of the scatter-plot display of a selected time-
period is that the compact single point representation of genes 
allows for the overlay of functional classifications by color-
coding as shown in Figure 7. If the number of functional 
classifications exceeds the number of distinguishable colors, or 
the user has trouble distinguishing between colors, color coding 
can be switched off allowing the user to highlight different 
groupings by clicking on their name in  the grouping panel. In 
color-coding mode this panel acts as a key to indicate which 
colors correspond to which functional classifications.  
 
Change queries and mean-value queries are performed by 
dragging a box which defines an allowable range of mean value 
and change in value. Once a query is formulated clicking and 
dragging the edges or corners of the visual representation can 
modify the query. Query results are highlighted with a view of all 
the data (for the selected time-period) perpetually displayed so 
that the user can modify their query with the same overview that 
was used in its initial formulation (see Figure 8). The query 

 
Figure 4: Data overview provided by the graph view 

time-slider. 

 
 

Figure 5: Graph view time-slider used to specify a time-
period. 

 
 

Figure 6: Graph view time-slider used to specify a value 
range query. 



shown in Figure 8 selects a group of genes with high yet falling 
expression. 
 
3.3 Coordination of views 
 
If the scatter-plot is used to visualize the entire observed time-
period it can be thought of as a measurable, though somewhat 
rudimentary, overview of the entire data. If a time-period is 
selected then the scatter-plot can be thought of as an overview of 
that time-period. The real power of the visualization comes when 
the multiple views are used together to interactively explore the 
data. This functionality is supported by multiple levels of 
coordination between views. 
  
One way in which the graph and scatter-plot views are 
coordinated is that, when a user specifies a time-period using the 
graph view, features of that time-period are displayed in the 
scatter-plot view. As there may be a need to view how the time-
series evolve over successive periods of time, and to relate the 
positions of representations between different time-periods, the 
derived parameters presented in the scatter-plot are calculated 
using interpolated values. This means that the thumbs of the slider 
can be moved with a granularity far less than that of the original 
time-series while the representations of genes in the scatter-plot 
display move by small increments. This makes it possible for the 
user to animate the scatter-plot view to gain a perspective of the 
change in expression for individual, or groups of genes, over time. 
Unlike traditional animated views, direct manipulation over the 
specified time-period allows the user to easily compare different 
frames.  
 
While linear interpolation is not generally considered appropriate 
for microarray data, in the case of our tool we make an exception 
for the following reasons. Firstly, linear interpolation is consistent 
with the value versus time graph representation of the data in the 
time slider component. Secondly, linear interpolation will not be 
used to approximate mixing values (which we consider a pre-
process), or form queries, as the time slider will click to recorded 
values when not being manipulated. The sole purpose of linear 
interpolation within the tool is to allow the user to relate between 
different gene representations in the scatterplot while the time 
period is adjusted using the time slider is being moved. 
 
Clicking on a gene representation in the scatter-plot view or the 
gene list will cause it to be labeled in the scatter-plot and 
highlighted in the graph view. This action allows the user to 
interpret the scatter-plot view of the data with a more familiar 
graph view. Genes may also be labeled in the scatter-plot and 
highlighted in the graph view by searching for and selecting their 
name using a ‘find gene’ menu option. A similar coordination 
between views is in the presentation of query results. When a 
query is formed, or in the process of being formed, results are 
presented in several ways. While replacement is used in the graph 
view, highlighting is used in the scatter-plot. As queries are 
incrementally adjusted the result display is updated rapidly in 
each display. This again will help the user comprehend the 
scatter-plot view with the more familiar graph representation. 
 
Coordination of views is also required in order to combine 
multiple queries to reveal patterns of similarity (item 3 of our 
requirements analysis). During the formulation and modification 
of an individual query the user can incrementally adjust any of the 
query parameters, including the time-period context, by 
manipulating slider thumbs or visual query components. To add a 
query, whose result will filter the result of any existing queries, 
the user presses the ‘add’ button (marked with a plus symbol) on a 

query combination panel. When a new query is added it only has a 
time-period and a rescaling mode. These parameters will not filter 
the results of existing queries. This makes it possible to adjust the 
rescaling and specified time-period to explore the effect on the 
existing query result. For example, a user may select genes with 
early-rising expression with log-scaling in an initial query. After 
adding a new blank query they can alter the specified time-period 
to examine how these genes behave at a later period. 
Alternatively, after specifying the initial query, they may switch 
to no-rescaling mode to assess whether or not any of these genes 
may have rising log-scaled expression due to the amplification of 
noise or insignificant variations. The user can even use a blank 
query to animate the scatter-plot representation of query results 
viewing how the selected genes expression changes over time. 
Clicking on the graphical representation of a query within the 
query combination panel restores that query’s rescaling and 
parameters to the graph view and scatter-plot so that an old query 
can be modified in much the same way as a new one. Regardless 
of which query is selected the highlighted selection is always that 
of the original data filtered by all queries. Clicking between 
different queries without query modification simply changes the 
visual query representation and, where appropriate, the time-
period or rescaling. In order to remove a query and cancel its filter 
on the overall selection the user first selects the query then presses 
the ‘remove’ button (marked with a minus symbol) on the query 
combination panel. The graphical representations of queries in the 
query combination panel are simply boxed textual representations 

 
 

Figure 7: Scatter-plot detail view with functional 
classifications color-coded. 

 
 

Figure 8: Representation of a query overlaid onto the 
scatter-plot detail view. 



of the query parameters, time-period context and rescaling 
outlined with a red border if the query is currently selected.  
 
Finally, users are able to save and restore the measurable queries, 
combined queries and results for reuse and sharing using simple 
‘save’ and ‘open’ menu options. 
 
4 Conclusion and further work 
 
Employing requirement analysis to evaluate the limitations of 
existing microarray time-series visualization techniques led us to 
the conclusion that a new technique was required in order to 
support the particular exploration and querying requirements of 
our users. The most striking limitation of existing tools was the 
omission of any mechanism by which the user could measurably 
query according to change in value over a period of time. Further 
analysis of this and other limitations directed us to the 
development of a tool that facilitated the exploration of 
microarray time-series through coordinated graph and scatterplot 
views. This new visualization technique allows the user to 
perform and combine a number of queries, including measurable 
change in value over a period of time queries, through an intuitive 
direct manipulation interface. The technique also gives the users a 
unique directly manipulated animated view of microarray time-
series that allows them to explore patterns over time for the entire 
data set and selected subsets. Combining a measurable query 
mechanism with an intuitive direct manipulation interface will 
guide the biologists toward query formulation and allow them to 
quantify query results. Initial testing of the tool proved positive 
with our users finding it easy to familiarize themselves with the 
different views of the data and identify specific features of interest 
in their data. The system is currently undergoing more detailed 
user evaluation in order to validate the results returned from a 
variety of different data sets and evaluate specific usability issues. 
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