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Abstract 
 

Microarray time-course data relate to the recorded 
activity of thousands of genes, in parallel, over 
multiple discrete points in time during a biological 
process.  Existing techniques that attempt to support 
the exploratory analysis of this data rely on static 
clustering views, interactive clustering views or 
coordinated clustering and graph views and are 
limited in that they fail to account for less dominant 
patterns in the data such as those that involve a subset 
of genes or a limited interval of the time-course. In this 
paper, we describe an alternative approach which 
avoids this limitation by using combined parallel views 
which present different complementary aspects of the 
data (i.e. timing, activity and change-in-activity). An 
example of how the views are combined to reveal 
significant patterns in the data (including those which 
cannot be found using clustering based techniques) is 
described and used to illustrate the benefits of 
combined parallel views to support exploratory 
analysis of this type of data.   
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1. Introduction 

Microarray technologies [1, 2] are a recent 
development in the field of functional genomics. 
Allowing biologists to monitor the activity of 
thousands of genes (typically around 30,000) in 
parallel at different stages of a biological process [3-5], 
they produce large scale time-course data (Figure 1) 
which is, subject to proper analysis, valuable to a 
number of significant applications in various areas of 
biological and biomedical research.   

The analysis of microarray time-course normally 
involves relating the activity of genes, and the timing 

of this activity, to biological processes. As there is 
relatively little information related to the function of 
genes, the timing of biological processes or even, in 
some cases, the existence of processes, this analysis 
will often require the biologist to reveal previously 
unknown or even unsuspected phenomena from the 
data [6]. To fully exploit the potential of microarray 
time-course to support this, biologists require analysis 
techniques that enable them to make unexpected 
discoveries and gain insights. These must support 
exploratory analysis of the data [6] while overcoming 
problems associated with its massive scale and 
complexity [7]. 

The current tack of established techniques for the 
analysis of microarray time-course is one of 
‘knowledge discovery’ where a complete visual 
overview of the data attempts to communicate 
unknown and unsuspected patterns [6, 8]. This is done 
by clustering the data so that genes with similar 
activity are grouped together and have their recorded 
activity displayed together. Figure 2 shows the most 
common of these representations – the combined heat-
map/dendrogram display [9]. This uses the output of 
Hierarchical Clustering which is an algorithmic 
method that groups genes to produce nested clusters 
adhering to a hierarchical tree structure. This structure 
is represented using a dendrogram (top of Figure 2) 
with activity levels colour-coded (green for high 
activity and red for low) and displayed in a heat-map 

Figure 1. Microarray time-course data.  A 
value against time graph view with the range 
of values at each time point defining a grey 
area and the recorded activity of a single gene 
highlighted. 



grid where columns correspond to genes and rows 
correspond to time-points. The matching of heat-map 
columns to dendrogram branches causes them to be 
ordered so that genes with similar activity, and groups 
of genes with similar activity, are closer together. 

A constriction of this type of clustering is that in 
combining the entire data into a single visual entity, 
gene representations must be compact and placed 
according to the relationship between their own 
recorded activity across the entire time-course and that 
of all other genes. As a direct consequence of this 
constriction, certain significant qualities are not well 
represented and significant patterns in the data are lost. 
Specifically, these are patterns of activity that are less 
dominant in the data and, in particular, patterns that are 
characterised over a limited interval of the experiments 
time frame [10] or, to a lesser degree, those that are 
contributed to by small proportion of the monitored 
genes (which, given the scale of the data, may still be a 
large number of genes). 

An example of a significant pattern that would not 
be revealed by Hierarchical Clustering is illustrated in 

Figure 3. Here a rise then fall in activity found over a 
particular interval (P) could suggest that a group of 
genes are related to a particular biological process and 
that that process is associated with the experimental 
conditions. In this case, when the data is clustered, 
different patterns of activity before or after the interval 
cause the related genes to be assigned to different 
groupings with the significance of their common 
activity over the relevant interval lost. This is 
illustrated in Figure 4 using a heat-map clustering 
display. The arrows at the bottom of the figure show 
the columns which relate to genes with the 
characteristic rising and falling activity from P1 to P3. 
It can be seen that it would be impossible to detect this 
pattern without pre-knowledge of its existence using 
this particular type of clustering display. 

2. Related work  

In general, Hierarchical Clustering can be 
considered as an overview of microarray time-course 
directed at revealing dominant trends. There are, 
however, a number of other clustering techniques, and 

 

 
Figure 2. Heat-map/ dendrogram 
Hierarchical Clustering display. 

 

 
 
Figure 4. Heat-map clustering display of microarray time-course with arrows at the bottom of 
the figure highlighting genes which contribute to a pattern occurring exclusively over an interval 
of the data (see Figure 3). 

 

Figure 3. A significant pattern occurring 
exclusively over an interval (P). 



associated techniques, which support the analysis of 
the data toward revealing certain less dominant 
patterns. These operate either by providing a more 
informative clustering view or allowing the results of 
multiple cluster views to be cross referenced and 
interactively explored. In the first case, the more 
informative clustering view is either one that allows 
genes to be assigned to multiple clusters or allows 
clusters to form across two or three dimensions (as 
opposed to the single dimension clustering provided by 
the ordering of gene representations in a hierarchical 
clustering heat-map).  

The techniques that allow genes to be assigned to 
multiple clusters are Fuzzy k-means clustering [11, 
12], Gene Shaving [13] and Plaid Modes [14]. Fuzzy 
k-means clustering and Gene Shaving produce groups 
of distinct clusters that can be represented as separate 
heat-maps (Figure 5). The disadvantage of this display 
is that, as genes can belong to multiple clusters, there 
will be a larger set of results and it will be even more 
difficult to perceive less dominant patterns unless they 
are specifically defined by the clusters. Given the scale 
of the data and subsequent high number of potentially 
‘interesting’ patterns, for any given less-dominant 
pattern this will be extremely unlikely.  

Unlike Fuzzy k-means clustering and Gene 
Shaving, the Plaid Models technique does not require 
for the activity of genes to be displayed more than 
once. Instead, the data is processed so that the bands of 
colour that link genes in a hierarchically clustered 
display are more predominant. This means that 
patterns of similar activity are more easily detected and 
the effort required to perceive associations between 
genes that are separated in the display is significantly 
reduced. It is, however, still the case that a pattern that 
is characterised over a limited interval of the 
experiments time frame will be dispersed along the 
gene-axis of the display and, if a pattern is contributed 
to by small proportion of the monitored genes (as is the 
biologically significant pattern in Figure 3) then it is 
unlikely that the pattern will detected.  

Clustering across two or three dimensions can be 
performed using Principle Component Analysis (PCA) 
[15], Singular Value Decomposition (SVD) [16], 
Multidimensional Scaling (MDS) [17] or Self-
Organizing Maps (SOM) [18-20]. The first three of 
these techniques are similar in that they communicate 
the activity of genes by presenting them as single 
points in a scatter-plot. From this type of display it is 
possible to perceive clusters of genes with similar 
activity from their proximity to areas where there is a 
higher density of gene representations (Figure 6). The 
two classes of clustering techniques which employ 
single point representations are PCA and SVD which 
use fixed axes to position gene representations and 

 

 
 

Figure 6. Scatter-plot clustering of 
microarray time-course data (areas with 
higher densities of gene representations are 
shaded to enhance clusters). 
 
 

 
 
Figure 5. Separate heat-maps used to 
display the results of Fuzzy k-means 
clustering or Gene Shaving. 
 

 
 

Figure 7. Self-Organizing Map clustering of 
microarray time-course data (cells with a 
higher number of genes assigned are lighter, 
inset - detail). 



MDS which doesn’t. In PCA and SVD these axes 
correspond to different measures of variation across 
the data so that the display characterizes the data along 
its lines of maximum variance. MDS forgoes axes 
employing an iterative algorithm that attempts to 
approximate inter-gene similarities in the display. Each 
of these approaches has its relative advantages and 
disadvantages. While a PCA or SVD display can be 
used to infer aspects of a gene’s recorded activity by 
relating its position to the measure of variation 
communicated in the axes, it is also the case that 
variations in activity that are not represented in the 
axes will not be communicated in the display. 
Conversely, while MDS is more capable of 
communicating more subtle variations in the data, 
there are no axes from which to relate the position of a 
gene’s representation to any aspect of its recorded 
activity.  

SOM is similar to MDS in that it attempts to 
approximate inter-gene similarities in the display. 
However, rather than representing genes as single 
points in a scatter-plot display, genes are assigned to 
cells in a uniform lattice (Figure 7). When the cells of 
the lattice are shaded according to their relative gene 
populations, it is possible to perceive patches of dark 
and light which correspond to clusters. SOMs are more 
effective at grouping similar items while MDS is 
effective in preserving the structure of clusters [21]. 
This makes SOMs the preferred alternative in 
microarray data analysis where it is often the former 
objective that has higher priority. 

The advantage of allowing clusters to form across 
two or three dimensions, as opposed to a single 
dimension, is that genes can be communicated as 
having less rigid associations with more clusters. For 
example, if a gene (x) is positioned on a one 
dimensional surface it can be placed between two 
clusters (A and B) to be associated with these two 
clusters. If a third cluster (C) is added then it becomes 
unclear as to degree by which the position of gene x is 
governed by its association between clusters A, B or C. 
If, however, the same gene is placed on a two 
dimensional surface we can determine, to a greater 
extent, its relative degree of association with three 
clusters A, B and C by observing its distance from 
each cluster. In general, however, an increased number 
of clusters tend to confuse the inference of which 
cluster which gene belongs to. This is particularly 
problematic when attempting to find patterns that are 
characterized over limited intervals of the time-course 
as the genes which contribute to these patterns are 
likely to be associated with other more dominant 
patterns and have their representations strongly 
associated with these patterns in the display. 

In general the different types of cluster display are 
considered as being complementary. That is, there is a 
general acceptance that the relative advantages and 
limitations of the different techniques can be traded off 
against each other by combining them in multiple 
coordinated views of the same application interface 
[22-24]. For example, a cluster of associated genes 
perceived in a SOM display can be linked to a 
hierarchical clustering display so that their patterns of 
recorded activity can be identified, or Fuzzy k-means 
clustering could be used to find patterns not already 
found by, say, PCA.  

To further compliment static clustering, information 
visualization techniques have been specifically 
developed to facilitate the interactive exploration of 
cluster results. These allow biologists to focus in on 
and labelling particular clusters [25] or query time-
course to find patterns that may be less dominant in a 
clustering display. This second group of techniques 
(described here as visual queries) allow the user to 
specify a required pattern of activity over a limited 
interval of the time-course This can be an acceptable 
range of values over a given interval [26, 27], a change 
in values between time points [25, 27, 28] or a profile 
that the activity of genes must adhere to [25] (Figure 
8). As this type of querying involves the specification 
of a limited time-interval, it can be seen as particularly 
appropriate for analysis which might involve the 
detection of less dominant patterns characterized by 
 

 
 

Figure 8. Visual queries: an acceptable 
range of values over a given interval (top), an 
acceptable change in values between time 
points (middle) and a profile that the activity 
of genes must adhere to (bottom).  



trends in activity over such intervals.  These techniques 
do not, however, provide an overview from which 
unknown or unsuspected patterns can be revealed and 
knowledge of a patterns existence is required before it 
can be formally identified. 

Despite the range of clustering techniques, 
techniques that support clustering  and the opportunity 
to combine and manipulate these different 
representations of the data, biologists are still unable to 
reveal a significant proportion of potentially relevant 
less dominant patterns in their data. Specifically, no 
technique or combination of these techniques are able 
to reveal previously unsuspected patterns that are 
characterized over limited intervals of an experiments 
time frame and are contributed to by a smaller 
proportion of the genes monitored (Figure 3). Given 
that to fully exploit the potential of the data biologists 
require analysis techniques that allow them to make 
unexpected discoveries and that a significant 
proportion of biological phenomenon will be related to 
less dominant patterns, new techniques are required 
that allow biologists to make unexpected discoveries of 
less dominant patterns. 

3. Time-series Explorer 

Our research to date has primarily focused on 
supporting the discovery of temporal patterns in 
microarray time-course and, specifically, the less 
dominant patterns that cannot be revealed using 
existing established techniques. This has included the 
development of two significant prototypes. The first of 
these allows biologists to relate scatter-plot 
representations of time-course intervals to a traditional 
graph view in order to distinguish the time-series of 
individual genes and groupings of genes from the 
background [29]. The second, allows biologists to 
query the activity of genes over time intervals by 
selecting gene representations in an interval scatter-
plot view [30].  

The Time-series Explorer [31] builds on our 
previous prototypes to facilitate the discovery of 
unsuspected patterns of temporal activity. This is 
accomplished by allowing biologists to explore their 
data using three coordinated parallel views of their 
data. These are an activity graph view, a change-in-
activity graph view and an activity against change-in-
activity interval scatter-plot (Figure 9). The layout of 
data in these views is as follows: 
a) The activity graph view (top left of Figure 9) 
overlays activity versus time graphs for all genes, or a 
selected subset of the genes, to indicate the range of 
high or low activity at each time point (time-point 
labels are specified in the original data-file).  

b) The change-in-activity graph view (bottom left of 
Figure 9) overlays change-in-activity against time 
graphs to indicate the range of rising or falling activity 
of selected genes between each pair of adjacent time 
points. Here change-in-activity defined as the relative 
change in recorded activity between time points for a 
gene. 
c) A vertical bar overlaid onto each graph view is a 
visual representation of the current selected interval. 
d) The activity against change-in-activity interval 
scatter-plot view (right-hand-side of Figure 9) 
summarizes the data within the specified interval by 
representing each gene as a single point.  The 
translation of a gene representation along the Y-axis 
corresponds to its mean activity over the interval and 
the translation of a gene along the x-axis corresponds 
to its change-in- activity from the start of the interval 
to its end. 
e) Each view is colour coded to indicate the density 
of overlaid gene representations (the coding used is 
adapted from a standard transparency composite and 
has the added benefit that it allows outliers to be 
distinguished from the background [31]). In certain 
selection modes genes are highlighted as red, in others 
un-selected genes are greyed out and do not contribute 
to the colour coding. 

As the combined views of the Time-series Explorer 
use corresponding axes and can be directly related to 
each other they can be described as being parallel [32]. 
The x-axes of each graph view map to the same 
dimension (time) and are geometrically parallel in the 
interface. The y-axes of each graph view relate directly 
to each axes of the scatter-plot with the same rescaling 
and distortions applied [31]. As the rising/falling axes 
of the change-in-activity graph view and the scatter-
plot are directly related but not geometrically parallel, 
clear labelling is used to enforce the association 
between these axes. For the sake of consistency, and to 
enforce the other relevant associations between axes, 
the same type of labelling is applied to all other related 
axes pairs. 

The different views of the Time-series Explorer are 
coordinated in two ways. Firstly, selecting genes in the 
scatter-plot or either graph view causes them to be 
highlighted in all views with immediate and 
continuous display of results (i.e. tight coupling [33] of 
the coordinated views). If a labelling tool is activated 
from the interface toolbar, moving the mouse over 
(brushing) gene representations in the scatter-plot view 
causes them to be labelled and have their expression 
patterns over the entire time-course coloured red the 
graph view. The labelling options are standard 
labelling, where only the scatter-plot gene 
representation directly under the mouse pointer is 
selected, and excentric labelling [34], where all gene 



representations within the bounds of a visible circle are 
selected. When freehand or box selection tools are 
activated genes can be selected more permanently. 
With the box selection tool, genes are selected by 
clicking and dragging to draw a box round their 
representations in the scatter-plot. The freehand 
selection tool allows the user to select genes by 
clicking and dragging a freeform shape around their 
representations. In either case, the density colour 
coding is reapplied according to only to those genes 
which remain selected (the representations of un-
selected genes are greyed out) and genes remain 
selected until another selection is made. 

The second coordination between views involves 
the interval selection in the graph views. The 
interaction mechanism that allows the interval 
selection to be adjusted is essentially the same as that 
of a multi-range dynamic query slider [35] utilizing the 
internal slider space for a visual representations of data 
in a manner similar to that of data-visualization sliders 
[36]. Dragging the edges of the vertical bar overlaid 
onto the graph views to represent the selected interval 
allows the user to adjust its start and end times 

independently. Dragging the center of the bar changes 
the start and end times with the duration remaining  

constant to shift the selected interval. During these 
interactions the interval adjusts in small steps with 
activity levels interpolated so that changes are gradual 
and the motion of gene representations in the scatter-
plot, which are dependent on the range of the selected 
interval, is fluid. This allows the scatter-plot to be 
animated so that it is possible to track genes, and 
correlated groups of genes, according to changes in 
their recorded activity across time. 

 Manual adjustments of the selected interval, 
actioned by interacting with the graph view, give users 
tight control over the pace and direction of the 
animation so it can be slowed down as interesting 
features become apparent, reversed when they want to 
look at something again and stopped, when 
appropriate, to focus in on an interesting interval and 
investigate patterns occurring over that interval in 
more detail by interacting with the scatter-plot view. 
Alternatively, the animation can be progressed 
automatically in a regular fashion using a play button 
located on the Time-series Explorer toolbar. 

 

Figure 9. Coordinated views of the Time-series Explorer (light colours represent a high 
density of overlaid elements,  dark colours represent a low density of overlaid elements) 
 



The interface of the Time-series Explorer is shown 
in Figure 10. The five panels combined in the interface 
are a toolbar, the graph views, the scatter-plot, a list of 
the selected genes and grouping panel which allows 
users to store selections and select genes that belong to 
predefined classifications (a more comprehensive 
description of the specific interaction mechanisms and 
the functionality of each panel is described in [31]). 

3.1 Combining animated and static views 
to find patterns of temporal activity  

In order to determine whether or not the Time-
series Explorer technique was indeed capable of 
supporting the analysis of microarray time-course in a 
manner that allowed the biologists to reveal the 
specific type of pattern that could not be revealed using 
existing established techniques, we conducted an 
formal user evaluation of the tool. The latest phase of 
this evaluation involved an experienced biologist 
attempting to analyse a familiar set of microarray time-
course data. This related to the recorded activity of 
around 8,500 genes over 17 time points belonging to 4 
concurrent stages of mouse development: virgin 
(activity recorded at days 10 and 12 of this stage), 
pregnancy (activity recorded at days 1, 2, 3, 8.5, 12.5, 

14.5 and 17.5), lactation (activity recorded at days 1, 3 
and 7) and involution (activity recorded at days 1, 2, 3, 
4 and 20) [4]. While the original data contained three 
replicates (separate runs of the experiment under 
identical conditions allowing results to be statistically 
verified), the data used in the evaluation combines 
these replicates using the average recorded value for 
each gene at each time-point to optimally exploit the 
existing functionality of the Time-series Explorer. 

The evaluation allowed us not only to assess the 
relative benefits of using the Time-series Explorer to 
analyse microarray time-course but also to determine 
specifically how the different views of the data would 
be combined in order to specifically find an 
unsuspected pattern of temporal activity. In this section 
we describe three characteristic patterns found and the 
manner in which views were combined by the 
biologists in order to find them. 

The first characteristic pattern involves a 
combination of two distinct trends in activity over 
different intervals of the time-course. Here the 
biologist wished to find which genes and groups of 
genes having rising activity at the start of lactation and 
falling activity at the end of lactation. The first stage in 
finding this pattern was to use the activity graph view 
to select the interval at the start of lactation. After this 

 
Figure 10. A screen-shot of the Time-series Explorer interface (i. toolbar, ii. graph view, iii. 
scatter-plot, iv. selected gene list and v. grouping panel). 
 



the scatter-plot was used to select all the genes with 
high rising activity over this interval. Next, the interval 
at the end of lactation was selected and the query was 
refined by selecting all the genes with falling activity 
over this interval. The results of the selections were 
then viewed over the entire time-course in the graph 
views. This revealed two groups of outliers that either 
had significant rising or falling activity over different 
periods of the pregnancy stage (see Figure 12) and 
prompted the biologist, who was concerned that the 
activity of these genes would not adhere to the required 
profile, to investigate further by adjusting the selected 
interval so that the representations of these genes could 
be labelled and their activity over the entire time-
course highlighted. This revealed that a significant 
proportion of the genes failed to fit the original profile 
and the original query was adjusted (by making the 
required level of activity at the start of lactation higher) 
to exclude them from the results. Finally the resultant 
gene listing was cross-referenced with existing 
predefined gene classifications in a pop-up window so 
that biological significance of the pattern could be 
properly assessed. This indicated a number of 
interesting genes and gene groupings which the 
biologist exported from the Time-series Explorer to be 

cross referenced with the results of other related 
experiments at a later date.  

The second pattern relates to general trends across 
the entire time-course. To investigate these general 
trends the biologist selected an interval fixed at its 
minimum value (an interval constrained by two time-
points for which activity is recorded) and shifted it 
across the entire time frame of the experiment to 
animate the scatter-plot view. At various stages during 
this animation the spread of gene representations in the 
scatter-plot became horizontally elongated. This 
occurred primarily during transitions between stages of 
development (i.e. virgin to pregnancy, pregnancy to 
lactation and lactation to involution) and indicated 
large numbers of genes with significant changes in 
their level of activity.  

The majority of these trends were unsurprising to 
the biologist as they reflected changes in the essential 
functioning of cells within the sample that would 
largely be detected by the observing the general 
activity patterns of groupings formed by clustering. 
Somewhat more interesting were the more subtle 
trends, such as the increased number of genes with 
changes in activity during pregnancy in relation to 
lactation. It was later verified that these particular 

 

 
 
Figure 11.  An unexpected pattern of temporal activity found using the Time-series 
Explorer: a) Animating the scatter-plot reveals a group of outlying genes with rising then falling 
expression over a small interval of the time-course, b) moving the mouse over the gene 
representations in the scatter-plot view allows them to be labelled and c) have their expression 
patterns over the entire time-frame highlighted in the standard graph view.



patterns would not be revealed by clustering.  
The third, and most significant, pattern was found 

while animating the scatter-plot to investigate general 
trends. As the scatter-plot animated through days 1 to 3 
of the pregnancy stage (an interval for which there are 
three time-points for which activity is recorded) an 
outlying group of gene representations showed 
significant rising then falling activity. To investigate 
this further the relevant interval was animated again, 
and then stopped so that the outlying genes could be 
labelled by moving the mouse over their 
representations in the scatter-plot. As the labelled 
genes were highlighted in the graph view, this revealed 
that the majority of the genes also shared low activity 
over the remainder of the time-course. Next the genes 
were selected and cross-referenced with pre-defined 
gene classifications. Significantly the selection was 
found to contain a high proportion of Keratin 
associated genes. Figure 11 illustrates this pattern 
showing selected frames of the original animation from 
interval P1 to P2 through to interval P2 to P3, the 
labelled scatter-plot at P1 to P2 and the effect of 
labelling in the coordinated graph view where the 
genes are highlighted. 

The main outcome of our user evaluation was to 
verify that the Time-series Explorer is uniquely 
capable of revealing previously unsuspected patterns 
of temporal activity and that the patterns found were of 
sufficient relevant biological significance to encourage 
a biologist to use the technique in the analysis of data 
from other experiments. Moreover, the biologist felt 
the tool to be more flexible than the other techniques 
used. This stemmed from the fact a large number of the 
valuable patterns in microarray data are combinations 
of patterns of temporal activity and that a biologist can 
use the technique to investigate different types of 
pattern without having to readjust between different 
tools and multiple unrelated representations of the 
data. 

4 Discussion 

Analysis of the biologist’s interaction with the 
Time-series Explorer interface during our user 
evaluation showed that each of its combined views has 
its own specific utility with regard to the finding of 
unsuspected patterns of temporal activity and that the 
direct relationships between these different views 
allowed them to be used together in order to realise a 
number of valuable information seeking tasks.  In 
general, the Time-series Explorer was found to be used 
in three complementary modes of operation which 
utilized the functionality, and combined functionalities, 
of the views in different ways.  

The first mode of operation is a type of general 
overview mode. This occurs when a large group of 
genes with dissimilar patterns of activity (or the entire 
data set) are selected and the graph views cannot 
communicate any trends or outliers due to the density 
of crossing lines. Here the biologists will interact with 
the graph views to animate across the entire time-
course in order to uncover general trends across time 
or outliers at smaller intervals by focusing their 
attention on the animated scatter-plot.  

The second mode of operation involves queries that 
return a large set of results. Here the biologist will 
roughly select a grouping of genes in a static scatter-
plot view and repeatedly refine their selection by cross 
referencing it in either graph view until their selection 
appears to match a certain profile. The biologist’s idea 
of the profile they wish to query is generally prompted 
by either pre-knowledge of the data (e.g. the notion 
that a significant group of genes will rise, fall, be high 
or be low over a significant interval) or a general 
pattern perceived by animating the scatter-plot over the 
entire time-course. Most notably, it is during this mode 
of analysis that the change-in-activity graph view 
seems to be of most value. This is because there are 
still a large number of selected genes and crossing 
lines can mask significant trends in change-in-activity 
in the activity graph view without necessarily masking 
the same trends in the change-in-activity graph view 
(Figure 12). 

The third mode of operation is where the biologist 
attempts to identify genes contributing to a less 
dominant pattern occurring over a limited interval of 
the time-course. These types of pattern are normally 
revealed unexpectedly during either of the other 
analysis modes as a smaller group of genes appear as 
coherent outliers when the scatter-plot is animated. 
Once found, the genes contributing to such a pattern 
are normally labelled in the scatter-plot and 
highlighted in the standard graph view. This allows the 
biologist to asses any significance that may be derived 
from the relevant gene symbols and identify whether 
or not activity is suitably coherent over the remainder 
of the time-course. If this information reveals that the 
genes are of sufficient interest to the biologists, they 
are selected (normally using the freehand selection tool 
on the scatter-plot) and cross referenced with pre-
defined groupings.  

  With reference to these different modes of 
operation the benefits of each of the combined Time-
series Explorer views can be described as follows: 
• Activity graph view: This is the most common 
representation of microarray time-course and, in many 
cases, it is found to be the most intuitive. It 
communicates the range of values at different time 
points. This which makes it useful to indicate the 



activity of genes over intervals for which the activity 
patterns of the selected genes are similar. It is, 
however, unable to communicate the activity of genes 
over intervals of time where activity is dissimilar. In 
general this view becomes useful when an initial query 
causes the selected group of genes to share some 
common pattern of activity over one or more intervals 
of the time-course. 
• Change-in-activity graph view: This view is less 
intuitive than the standard graph view but is useful 
when crossing lines mask trends in change-in-activity 
in the activity graph view (Figure 12). This occurs 
when there are a large number of genes with similar 
changes in activity but the activity levels are 
dissimilar. 
• Scatter-plot (static): The chief benefit of the 
static scatter-plot view is that it provides an interface 
from which genes can be selected or labelled according 
to aspects of their activity over a limited interval. The 
activity of these genes can then be viewed over the 
entire time-course as it is highlighted in the more 
intuitive activity graph view (this linking also helped 
the biologists to familiarise themselves with the 
scatter-plot in static and animated form [30]). 
• Scatter-plot (animated): When animated, by 
adjusting the interval selection using the graph views, 
the scatter-plot can reveal trends and outliers over the 
entire time-course. This animated overview is required 
when trends and outliers are occluded by crossing lines 
in the graph views. 

 
On the whole the biologists seemed to shift focus 

between the different views of the data with relative 
ease. This was due to the fact that the views were 
parallel and easily related to each other. The 
coordination of views as the biologists interacted with 
the data enforced this understanding with a resultant 
effect that they were able to combine views to realise a 
number of information seeking objectives and explore 
their data in a manner that allowed them to uncover 
several significant patterns. 

The Time-series Explorer can be considered as 
unique in its application of parallel coordinated views 
for the exploratory analysis of microarray time-course. 
While existing techniques often coordinate clustering 
and graph views of microarray time-course, the 
relationship between views cannot be considered as 
direct due to the extent of the alternate processes which 
are applied to the data before visualisation. These 
techniques are better described as multiform 
visualisations [32] as they represent alternative 
realisations of the same data. 

5 Conclusions and further work  

In this paper we have described the Time-series 
Explorer’s combination of parallel views for the 
exploratory analysis of microarray time-course data. 
The specific views combined in the Time-series 
Explorer are an activity graph view, a change-in-
activity graph view and an activity against change-in-
activity interval scatter-plot. These views are 
coordinated so that the scatter-plot summarises an 
interval which is selected using either graph view and 
selected genes are highlighted in all views. Having 
determined the types of pattern that cannot be revealed 
using existing established techniques as being less 
dominant patterns in the data, such as those that occur 
over limited intervals of the time-course, we evaluated 
the Time-series Explorer and verified that it is capable 
of effectively supporting biologists in their efforts to 
find these types of pattern. Analysis of the biologist’s 
interaction with the Time-series Explorer interface 
during this evaluation showed that each of its different 
views has its own distinct benefits and the direct 
relationship between views allowed them to be 
combined in such a manner that they could be used 
together to explore the data toward revealing the less 

 
Figure 12. Change-in-activity graph view 
(bottom) can be used when significant trends 
in change-in-activity (from V12 to P1 and P3 to 
P8.5) are obscured in the activity graph view 
(top). 
 



dominant patterns. This indicates that, while existing 
established techniques (which either use a single 
clustering view of the data or multiform visualisations 
that combine multiple clustering and/or graph views 
may be more appropriate for revealing general trends 
in microarray time-course), a parallel view approach is 
more appropriate for revealing detail in the data and 
supporting the discovery of less dominant patterns. 

Due to the success of our user evaluation the tool 
has been adopted for the analysis of two ongoing 
experiments. As these experiments will involve 
multiple time-courses under different conditions we 
plan to adapt the technique so it is capable of 
comparing the results of multiple related experiments. 
In order to improve the quality of patterns found by 
such an extended technique and increase the biologists 
ability to make informed decisions as to the 
significance of their results we also plan to incorporate 
measures of statistical confidence, into both the visual 
representations and interaction mechanisms of the 
technique, and increase the possibilities for linking the 
data and results to external databases of pre-defined 
classifications, gene annotations and pathway 
information. The expected result is that we can adapt 
the existing Time-series Explorer technique exploiting 
the benefits of the animated interval scatter-plot and 
complimentary parallel views to develop a more 
complete microarray time-course analysis tool. 
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